Gravitational Waves: Measuring Ripples in Spacetime

Jocelyn Read

GVC PAC GRAVITATIONAL WAVE Physics and Astronomy Center

LIGO Press Conference

February 11, 2016

Earth and Its Moon as seen from NASA's Mars Reconnaissance Orbiter, Nov. 20, 2016

Gravity + Relativity: General Relativity

Newton:

Falling and orbiting are explained by the same gravitational force

All masses attract each other

Relativity:

Space and time are not distinct

Nothing travels faster than light

"Matter tells space-time how to curve and space-time tells matter how to move." - John A. Wheeler

The movement of stars near the center of the Milky Way

At the center: a mass 4 million times the mass of the Sun

$F = G M m / r^2$

If you make an object smaller in size, but keep the mass the same, the gravitational effects get stronger

M ≈ 1.0 M_{sun} R ≈ 5800 km

Strongest gravity: compact objects

Comparison by Richard Pogge, Ohio State

Neutron stars: matter's last stand against gravity

Black holes: extremes of space-time curvature

- Found in the centers of galaxies
- Formed when the most massive stars collapse
- Gravity so strong...
 - Nothing can escape from within the horizon (surface)
 - Singularity inside horizon

Images from Wikipedia

Mass in motion:

changes in spacetime travel at the speed of light

Moon passing Earth as seen from NASA's DSCOVR spacecraft (NASA/NOAA)

Gravitational wave

- Stretching and squeezing space
- Traveling at the speed of light

Animation from http://www.einstein-online.info/spotlights/gravWav

Two objects orbit

Far away, a ring of particles moves in response

Demo by Eric Flynn, CSUF

- Orbiting stars emit gravitational waves; waves carry away energy
- Orbits with lower energy are closer together
- Closer orbits produce stronger waves

Gravitational Waves

Movie by CSUF student Nick Demos, Simulating eXtreme Spacetimes collaboration

Measuring gravitational waves near Earth

Sources of gravitational waves

Colliding neutron stars & black holes

Spinning neutron star with a bump

Non-spherical Supernova

Cosmic Gravitational wave background

LIGO Hanford

LIGO Livingston

Operational Under Construction Planned

Gravitational Wave Observatories

GEO600

VIRGO

KAGRA

LIGO India

LIGO: Laser Interferometer

Animation: LIGO

What must Advanced LIGO overcome?

Slide courtesy Josh Smith, CSUF

Advanced LIGO (20154

005 505 210

Observation of Gravitational Waves from a Binary Black Hole Merger

September 14, 2015 at 09:50:45 GMT

PRL 116, 061102 (2016)

LIGO Livingston, Louisiana LIGO Hanford, Washington

Supercomputer calculation of gravitational waves from merging black holes

Movie by CSUF student Haroon Khan, 28 SXS collaboration

PHYSICAL REVIEW LETTERSTM

Member Subscription Copy Library or Other Institutional Use Prohibited Until 2017

Articles published week ending

12 FEBRUARY 2016

Properties of the binary black hole merger GW150914: Result of merger

Final black hole: 62±4 solar masses spinning at about 100 Hz

Estimated Iuminosity (in GW) ~10⁵⁶ erg/s

What did this mean?

- First direct detection of gravitational waves
 - opens the field of gravitational-wave astronomy
- First observation of stellar mass black holes (3!)
- First observation of two black holes merging to form one final black hole
- No deviations from General Relativity seen in this strong-field, high-velocity regime

More black holes merge

ArXiv 1606.04856

Image credit: LIGO

Observation of Gravitational Waves from a 22 Solar-mass Binary Black Hole Coalescence

http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.116.241103

90%-10% sky localizations

LIGO (Leo Singer) Milky Way image (Axel Mellinger)

What's next for LIGO?

A population of black holes, merging neutron stars, multimessenger astronomy?

Black Holes of Known Mass

Searches for steady ("continuous") sources

 Supernova remnants and pulsars

Artist image of an accreting neutron star (Mark A. Garlick)

NASA's Chandra X-ray Observatory image of the Crab Nebula

Improved sensitivity

 Sensitivity to merging neutron stars shown

Shane Larson, Northwestern University

LIGO as an astrophysical-scale collider

Merging compact stars

Merging large stars

Numerical simulations: K. Hotokezaka, YITP

Learning about matter in neutron stars

frequency

Read et al

Learning about matter in neutron stars

frequency

Read et al

More information?

- Science summaries of LIGO collaboration results
 - <u>http://www.ligo.org/science/outreach.php</u>
- Educator guide and teacher courses
 - <u>http://epo.sonoma.edu/ligo/</u>
- Sounds of Spacetime<u>http://www.soundsofspacetime.org/</u>
- Documentaries on <u>space.com</u>
- "The basic physics of the binary black hole merger GW150914"
- LIGO on Facebook/Twitter!
 - <u>https://www.facebook.com/LigoScientificCollaboration</u>